Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium
نویسندگان
چکیده
The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.
منابع مشابه
The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1.
Spore-forming, Gram-positive sulfate-reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI-1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected i...
متن کاملFe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1.
Desulfotomaculum reducens MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing several metals, among which is Fe(III). Very limited knowledge is available on the potential mechanism(s) of metal reduction among Gram-positive bacteria, despite their preponderance in the microbial communities that inhabit some inhospitable environments (e.g., thermal or hyperthermal ecosyst...
متن کاملCharacterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens
Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III). Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III) reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III) reduction, but does not support significant growth, suggesting...
متن کاملMetal reduction by spores of Desulfotomaculum reducens.
The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO(2). U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) r...
متن کاملMetal reduction by spores of Desulfotomaculum
The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO2. U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) red...
متن کامل